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Dynamical Semigroup Description of Coherent and 
Incoherent Particle-Matter Interaction 
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The meaning of statistical experiments with single microsystems in quantum 
mechanics is discussed and a general model in the framework of nonrelativistic 
quantum field theory is proposed to describe both coherent and incoherent 
interaction of a single microsystem with matter. Compactly developing the 
calculations with superoperators, it is shown that the introduction of a time scale 
linked to irreversibility of the reduced dynamics directly leads to a dynamical 
semigroup expressed in terms of quantities typical of scattering theory. Its 
generator consists of two terms, the first linked to a coherent wavelike behavior, 
the second related to an interaction having a measuring character, possibly 
connected to events the microsystem produces propagating inside matter. In case 
these events breed a measurement, an explicit realization of some concepts of 
modern quantum mechanics ("effects" and "operations") arises. The relevance 
of this description to a recent debate questioning the validity of ordinary quantum 
mechanics to account for such experimental situations as, e.g., neutron 
interferometry is briefly discussed. 

1. INTRODUCTION 

Consider a source emitting practically only one particle at a time, feeding 
an interferometer; one of the most impressive features of quantum mechanics 
is the fact that the record in a detector of the output of the interferometer during 
a suitable time interval shows an interference pattern. If the experimental setup 
allows detectable events to be produced during the time the particle takes to 
pass through the interferometer, thus showing which way the particle went, 
a two-component pattern is found, respectively affected and not affected by 
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interference. Seemingly the interfering part can be strongly attenuated if the 
probability of detecting events is enhanced, though still retaining its visibility. 
A number of experiments of relevance to the question have been carried out 
(Rauch, 1990; Rauch et al., 1990; Mittelstaedt et al., 1987; Chapman et  al., 
1995). It has sometimes been claimed, and also appears in textbooks, that 
the very possibility of such a detection forces the interference pattern to 
disappear; such a somewhat strange expectation is rooted in an exaggerated 
faith in the so-called state reduction postulate of quantum mechanics. This 
postulate is a strongly idealized description of what happens to a quantum 
system due to the interaction with a device measuring a given observable of 
the system; using this postulate, a short-hand explanation of measurement is 
usually given, based on the idea that a quantum system must be represented 
by a "state vector" 0(t). A much more comfortable situation is met if, instead 
of a state vector, a statistical operator p(t) is taken as the basic mathematical 
representation of a quantum system (Lanz, 1994). This attitude is sometimes 
considered suitable for applications, e.g., quantum optics, but not fine enough 
for more fundamental problems; it is often implicitly assumed that a statistical 
operator applies only to the description of a statistical mixture of a large 
number of microsystems, while in modem experiments often only one or 
very few relevant microsys~ems are present together in the experimental 
device. In these single-particle experiments' it is often argued (Namiki and 
Pascazio, 1991; Thomson, 1993) that the system is to be described by a 
state vector. 

In our opinion, instead, one-particle quantum mechanics, no matter if 
one uses 0(t) or p(t), refers in principle to a statistical experiment in which 
repeatedly a single particle is produced, prepared, and observed under fixed 
macroscopic conditions; this does not oppose the fact that a beam of particles 
whose interactions are negligible and whose correlations are irrelevant may 
be treated in many experimental situations as effectively equivalent to the 
former preparation. It is just the modalities of the statistical experiment, 
which remain unchanged during the different runs of the experiment, that 
are represented by the statistical operator (or by the state vector, when this 
higher idealization works); this is indeed the striking difference with classical 
mechanics, where to each run of the statistical experiment there corresponds 
a trajectory in phase space. In this context a completely different point of 
view seems to underlie the so-called many-Hilbert-space quantum mechanics 
that was recently proposed (Namiki and Pascazio, 1993). In this framework 
a wave function is associated to each single run of a statistical experiment 
and, for example, in a Young's interference experiment random phase shifts 
between the two branch waves may arise in the repeated experimental runs, 
due to interaction with matter along one of the two branches, leading to 
attenuation of the interference pattern (Namiki and Pascazio, 1991). 
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As is well known, state vectors ~b ~ ~ ,  via the one-dimensional projec- 
tions P ,  on ~ ,  correspond to the subset of extreme points of the convex set 

of statistical operators in ~ ;  i.e., they cannot be interpreted as mixtures 
of other possible preparations and any p E ~ can be represented as p = Ej 
pjP, j ,  For this reason state vectors ~ ~ ~ are also called "pure states." Let 
us recall a relevant mathematical result (Davies, 1976); any invertible affine 
mapping & on ~ onto ~K has the form 

~tp = M p M  t 

where M is a unitary (or antiunitary) operator on ~ ;  then, if time evolution 
is represented by such a mapping (Comi et al., 1975), the basic role of pure 
states for the dynamics becomes obvious and consequently also the relevance 
of the SchrOdinger equation, of the Hamilton operator, and finally the corre- 
spondence with classical mechanics and classical field theory. To summarize 
with the aid of formulas, we have 

Pt = ~ttt0Pto = U(t, to)PtoUt(t, to) = ~ pjP,j(!) 
J 

O, = U(t, to)d:! o, 
d•! ih ~ = H!,! 

In fact the main part of the physics of microsystems can be developed 
almost neglecting the concept of statistical operator [a noteworthy exception, 
however, is the definition of the quantum collision cross section (Taylor, 
1972; Ludwig, 1976)]. 

Such a reversible dynamics is to be expected for an isolated system. If 
interaction with an environment is not negligible during the time evolution, 
the question to be raised is whether this evolution can be simply described 
by a mapping ~t,to on ~K; i.e., whether PI is uniquely determined by Pro and 
not by the whole history {Or'; t' --< to} before to, recorded via interaction by 
this environment. In this general situation the system becomes the whole 
complex of particle plus environment and no disentanglement of the particle's 
degrees of freedom is possible. On the contrary, a neat and extremely relevant 
simplification occurs if such a mapping ~ttto exists: then the one-particle 
Hilbert space ~ and not the Fock space of the whole system is the relevant 
mathematical framework. Let us assume that this simplification occurs, typi- 
cally due to the fact that the aforementioned history is forgotten during the time 
elapsed before Ot varies appreciably, as in the case of Markovian dynamics; 
nevertheless one can no longer expect ~ttt0 to be invertible: then the statistical 
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operator Pt acquires a primary role. In differential form the evolution equation 
for Pt is given by 

dP---!t = ~,p,, ~ ,  = lim aft(t + % t) - # 
dt ~ ~o 'r 

 to- (eXOio lt ) (1.1) 

In Section 2 we explicitly construct the generator ~t  of the temporal evolution 
for the microsystem showing in a general way how it can be obtained starting 
from the Hamiltonian describing the local interaction between microsystem 
and macrosystem. An essential step is the introduction of a time scale on 
which the system is to be described, linked to the irreversibility of the 
interaction. To develop the calculations we rely upon a reformulation of the 
theory of scattering based on superoperators, that is, mappings defined on 
the algebra generated by creation and destruction operators acting in the Fock 
space. Quantum statistics is readily accounted for and the mapping ~(z) [see 
(2.6)], strictly connected to the transition operator of the quantum theory of 
scattering, plays a central role from the very beginning. The use of the 
Heisenberg picture, consistent with the concentration of one's attention on 
the microsystem's observables, allows one to take the whole complex structure 
of the macrosystem into account. The generator obtained is of the Lindblad 
type, though allowing for unbounded operators. The general structure of such 
generators, ensuring that Attto maps ~K into ~ ,  is the following: 

i 1 1 
~'P = - h  (Htp -  pHt ) -  ~ (Atp + pAt) + ~ X LtjpL~ 

J 

Ht = Hit, At >-- O, Ltj being operators in 

The relation 

(1.2) 

At = 1 E L~Ltj (1.3) 
2 j  

must be satisfied in order that Tr Pt be conserved. If the particle can be 
absorbed, (1.3) is replaced by 

At >-- ! E L~L,j (1.4) 
2 j  

If the last term in (1.2) is neglected, for a pure state Pt = IOt)(t~tl, (1.1) 
yields the Schr6dinger equation: 
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d•t 
i h  --d-: = (I4,  - i a , ) ~ ,  (1.5) 

This is the basis for the wavelike description of propagation of a particle 
inside matter. Setting Ht - iAt = pZl(2m) + V(x, t), one can define 

n(x, v, t) = X/1 V(X,hv t) (1.6) 

g 

as the refractive index of the medium, where hv is to be identified with the 
energy of the incoming particle: such a description is usually adopted in 
inter;erometric experiments to explain how a block of matter whose properties 
are accounted for by the phenomenological macroscopic potential V(x, t), 
when placed in one of the two branches, can induce a phase shift in the 
corresponding branch wave, or, in the case of an imaginary potential, cause 
absorption. Only in the very special case of At = 0, i.e., for a real "macro- 
scopic" potential V(x, t), does one have by (1.3) or (1.4) that Lq = 0 and 
(1.5) is exactly equivalent to (1.2). In the presence of absorption At 4= 0 
implies, by (1.3), Ltj ~ 0 for some j; but also in the absence of absorption 
one cannot expect that Ltj = 0. Notice that, if one is not aware of the basic 
role of (1.2) and of the importance of the last term in its r.h.s., by (1.5) one 
could be confirmed in the erroneous belief that the nonreality of the potential 
V is exclusively linked to absorption processes. To grasp the significance of 
the term (llh)~jL#L~ for the dynamics of P, let us write the evolution of p 
due to it in a small time interval "r in the form 

"r - - Ltj 
AO = ~ Tr(ZAtO) ~j LtypLb, s - ~ (1.7) 

The statistical operator E-~tyP/~t~ is a mixture of subcollections LtjpLt~ related 
to outcome channels labeled by the index j; it bears some resemblance to 
the statistical operator Ej P#Pj which represents, by the previously mentioned 
reduction postulate, the system after the measurement of an observable A = 
Ej aj Pj; (1/h) Tr(2Atp) expresses the strength of the coupling to the incoherent 
regime. More generally a mapping whose infinitesimal generator is of the 
form (1.2) admits measuring decompositions that have been characterized in 
the context of "continuous measurement theory" initiated by Davies for the 
counting processes and developed later in full generality [for a recent review 
see Lanz and Melsheimer (1993) and Lanz (1994)]. These decompositions 
are related to the operators Lty responsible for the irreversible dynamics, and 
clarify what is meant by the measuring character of a mapping describing 
the temporal evolution of a system. We will see in Section 3 that (1.2) couples 
very simply the typical wave dynamics, which is responsible for interference 
phenomena, with a "noncoherent" regime. Obviously in many instances the 
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main interest is to put the wavelike behavior in major evidence; this amounts 
to making Ltj negligible, so that (1.5) is indeed suitable to describe the 
dynamics. On the contrary, more recent investigations, e.g., neutron interfer- 
ometry in the presence of stray absorption in one path of the interferometer 
(Rauch, 1990; Rauch et al., 1990), aim at investigating the competition 
between wavelike coherent behavior and which-way detection: then (1.1) 
and (1.2) must be considered. In Section 3 the physical interpretation of the 
dynamics thus obtained for the microsystem is discussed, showing the inter- 
play between a "purely optical" regime [such as in (1.5) and (1.6)] and an 
"events-producing" one, strictly connected to the presence of the incoherent 
contribution in the r.h.s, of (1.2). 

2. CONSTRUCTION OF THE GENERATOR 

We assume for simplicity that the whole system is confined, e.g., in a 
box; eventually we can get rid of this confinement by letting the size of the 
box go to infinity. The microsystem is described in a Hilbert space ~(~); 
energy eigenvalues are Ef, energy eigenstates uf, spanning the space ~o). In 
this paper we use the formalism of nonrelativistic quantum field theory, which 
will play an essential role in obtaining a general procedure leading from the 
second-quantized Hamiltonian H of the whole system, acting in the global 
Fock space ~ ,  to the generator of the semigroup ~ acting in ~-(~m) (the 
set of trace-class operators in ~m), 

We shall set 

H = H o + H m + V  

no = ~ Efa}af, [af, atg]~ = ~fg 
f 

where a I is the destruction operator for the microsystem, either a Fermi or 
a Bose particle, in the state uf; Hm is the Hamilton operator for the macrosys- 
tem ([Hm, af] = 0), also containing the potential determining the internal 
structure of the macrosystem; V represents the interaction between the two 
systems. We shall assume in this paper that no absorption process of the 
microsystem occurs: then N = Eh a~ah is a constant, [N, H] = [N, V] = 0. 
The present treatment is nonrelativistic due to the role played by particle 
number conservation. 

We assume the following expression for the statistical operator: 

rg 
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where p'~ is a statistical operator in the subspace ~ of ~F in which N = O, 
representing the macrosystem, and therefore 

m = o, pma} = O, V f  

while p is a statistical operator in the subspace ~ of ~F in which N = 1. 
As far as the microsystem is concerned, the dynamics of the macrosystem 
is not appreciably perturbed by the presence of the microsystem itself, so 
we can assume that 

dpm(t) _ i 
dt h [Hm' pm(t)] 

The coefficients p ~  build a positive, trace-one matrix, which can be consid- 
ered as the representative of a statistical operator p(t) in ~(t). In fact, since 
we are interested in the subdynamics of the microsystem and thus in observ- 
ables of the form 

A = ~ a~j~)ak (2.2) 
h,k 

where ~ )  is the matrix element of the corresponding operator acting in ~(t), 
we will make use of  the following reduction formula from ~F to ~O) for 
the expectation value of an observable A of the form (2.2) in the state (2.1): 

TrxF(AP) = ~ A~)P~, ) = Tr~l)(Ampm) 
h,k 

Considering in particular the operator A = a~ ag, we have 

Tr~F(AP) = p(ff 

To specify the generator of  the semigroup we will consider the evolution of  
the statistical operator on a time scale ~" much longer than the correlation 
time for the macrosystem, thus approximating dp(ff (t)ldt by 

ap (0 _ l 
[p~(t  + r) - p(ff(t)] 

= 1 [Tr~F(a} ase_(U~)mp(t)e(~)m ) _ p~(t)] (2.3) 
T 

Exploiting the cyclicity of the trace, we will work in Heisenberg picture, 
shifting the action of the temporal evolution operator on the simple expression 
a}ag, thus considerably simplifying the calculation without introducing 
restrictive assumptions on the structure of P" or of the interaction. To proceed 
further, we introduce the superoperators 

i i i 
= ~ [H, .], ~0 = ~ [n0 + n,,, .], ~ = ~ [v, .1 
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acting on the algebra generated by creation and destruction operators. Note 
that the operators 

( a ~ t ) " i ( a ~ 2 ) " 2 . - .  (a~)nr(akj)ml(akz)m2"'' (ak) ms 

are "eigenstates" of the superoperator ~o with eigenvalues (i/h)(Er=l niEh~ 
- -  E~=t miEk), in particular, 

i i 
~Oah = --~ Ehah, ~oa~ = +~ Eha~ 

To calculate (2.3), we evaluate e~e~(a~ak) with the help of the following 
integral representation: 

e ~  ( a~ak) = ( e~" a~,)( e ~  ak) 

~+i~+~ eZ"((Zl _ ~) - la~)  dzl 

J-i~+, 2~i  

f +i~+e dz2 
• eZ2~((Z 2 - ~)- tak)  (2.4) 

J-i~+~ 2"rri 

Using twice the identity 

(z - ~)-~ = (z - ~0)-~[1 + V'(z - ~ ) - q  

= [1 + (Z - -  ~ ) - l ~ l f ] ( Z  - -  ~ 0 )  -1 ( 2 . 5 )  

we obtain 

(z - ~)-1  = (z - ~o) - l  + (z - ~o) - l f f ( z ) ( z  - ~0) - l  (2.6) 

ft(z) --- V + V(z - ~ ) -~V 

to be substituted in (2.4). Taking into account the fact that [H, N] = 0, one 
can see that the restriction to ~ of the operator ff(Z)ak has the simple 
general form 

(~-(Z)ak)X~ = ~ T~(Z)ah (2.7) 
h 

where Tk(z) is an operator in the subspace ~F. This restriction is the only 
part of interest to us, since we are considering a single microsystem. One 
can also express T~(z) in terms of ~-(z) as 

[(~(z)aDa~]x ~ = T~(z) (2.8) 

and, taking the adjoint, also 
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Formulas (2.5) and (2.6) are clearly reminiscent of  the usual identities satisfied 
by the resolvent operator in the theory of scattering. The mathematical frame- 
work is, however, quite different, since we are now dealing with superopera- 
tors. The quantity to be related to the usual T-matrix is the operator Tkh(Z) of 
(2.8), acting in the subspace ~F, that is, a second-quantized operator for the 
macrosystem. Its expectation value, which appears in the final equation (2.19) 
via the operator Q, may be linked to a refraction index, often used as a 
phenomenological description of the interactive of a single particle with 
matter (Vigu6, I995), as already mentioned in the first section. Since the 
index of refraction is an operator, it would also be possible to calculate 
fluctuations from the equilibrium value. On the same footing, neglecting the 
incoherent contribution to the dynamics, that is, the last term of the Lindblad 
equation (2.19), the usual description of neutron optics, still based on phenom- 
enological potentials, may be recovered (Sears, 1989). In a future paper we 
intend to elucidate these possible connections to phenomenological expres- 
sions and concrete applications in detail. 

Denoting by I h) -- 10) | I h) the basis of eigenstates of  Hm spanning 
~ F ,  H m l h )  = ExlK), we obtain the following explicit representation of ((z 

- ~ ) - l a k ) ~  as a mapping of ~ into ~ :  

_ ak I X ' ) ( X ' l T ~ ( z ) l X ) ( X l a f  

z + ( i lh lEk  + ~, ,  (z  -~ ( i /h )Ek l ( z  - ( i /h l (Ex ,  - Ex  - Ef))  
f 

Since ((z* - ~ ) ' l a D +  = (z - ~ ) - l a ~  and by (2.1) one has easily 

Tr~F[((Z l -- ~ ) -  la~,)((z2 -- ~ ) -  laDp(t) 1 

p~,)(t) 

(Zl - (i/h)Eh)(Z2 + ( i /h)Ek) 

+ y~ 1 <xlr*~h(z~)lx')<x'~pm(OIx> 
x,x' z: + ( i /h)Ek p~)(t) (zl - (i /h)Eh)(Zl + (i/h)(E~, - Ex - Eg)) 

g 

( h ' l  T~ (Z2) l h ) ( h l p m ( t ) l k  ') p~)(t) 1 
+ x,x' ~ (z2 + (i/h)Ek)(Z2 - ( i /h)(Ex,  - Ex - Ef)) Zi - ( i lh)Eh 

f 

(X"l r~(z2) I X) 
+ x,x',x" ~ (z2 + (i lhlEk)(z2 - (ilhl(Ex,, - Ex - Ef)) 

f,g 

[ah(~- (z)a~)]~,~. = T~k(z *) (2.9) 

((z - ~ ) - ~ a k ) ~  
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X ( k [ p m ( t ) { h  ' )  ( X ' [  r~gh(Z~)l~k u) 

(Zl -- (i/h)Eh)(zt + (//h)(Ex, - Ex' - Eg)) P}J)(0 (2.10) 

Since these expressions will be considered for values of the complex variables 
z, zl, z2 of the form iy + r we can replace in (2.10) Eh ---> Eh -- ih'q, Ek --> 
Ek + ih'q, Ef--> Ef  + 2ih'q, Eg ---> Eg - 2ih'q, r > "q > 0, without introducing 
singularities and obtaining expressions that depend smoothly on the parameter 
-q and yield (2.10) in the limit -q ---> 0. Let us consider the expression 

+i~176 dz e(Z_(i/h)Ek+~) ~ 
Q g ? h ( q "  " q )  = 2"rri 

d - - i oo+e  

( k  l T~gh(z*) l k ' ) ( k '  l pm(t) l k )  • 
• (Z - ( i lh)Eh - "q)(z + (i lh)(Ex, - E• - Es)  - 2"q) 

In the integration over z we will distinguish two different kinds of contribu- 
tions: the first due to the denominators and strongly dependent on the indexes 
g, h; the second due to the singularities of T~gh(z *)  that are poles on the 
imaginary axis: 

Qtah(x, -q) = Qtgh('r, Xl) + Q~#('r, ~q) 

We obtain 

Qlgn('r, rl) 
e( i/h ) ( Eh- Ek )7 + 2~V 

= ~ (i/h)(Ex, + Eh Ex E s) X,k' - -  - -  - -  ' l ' l  

e - (i,~)(Ek, + Ek- Ek - Eg)'r + 3"q'r 

+ x,x' ~ - ( i lh ) (Ex ,  + Eh -- Ex - E a) + ~q 

X (kl T t h ( i  (Ex, - Ex - Eg) + 2"q~l k')p~',x(t) 
/ 

: -  E e(i/h)(Eh-Ek)+2~lx 
k,k' 

x v (-L " k  h E h  

1 --  e -(i/h)(Ek'+Eh-Ek-Eg)~+~x 

(ilh)(Ex, + E h - E x - Eg)  - "q 

+ "q)l k')p~,x(t) 

+ X e-(i/h)(Ex'+Ek-Ek--Eg)r 

k,h' 

X 

+ "n)t • 

--  T "fhl 7/ (kIT*gh(+(i/h)(E~, - Ex Eg) + 2~) - _g t - (  h)Eh + ~q)lk') 
07'dO (-(//h)(Ex, - Ex - Eg) + 2"11) - (+(i lh)Eh + ~l) 
(2.11) 
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If we choose a time scale, dependent on the properties of  the statistical 
operator, such that 

,1- 
IEx, + Eh -- Ex - E g l ~  < <  1 (2.12) 

we can simply retain in the first factor the contribution linear in "r, which 
amounts to 

'r Xx,x' (h l Ttgh(--~ Eh + "q) ' h ')(h ' l pm(t) l h~ 

The second term is a superposition of a huge set of exponentials e x p [ -  
(ilh)(E~,, +Ek  -- Ex - Eg)'r] with amplitudes 

(hi Ttgh(+(ilh)(E~,, - Ex - Eg) + 2-q) - Ttsh(--(ilh)Eh + "q)lX') 

- ( i / h ) ( E , , ,  + Eh -- E,, - Eg) + ",1 

that are slowing varying over a range or of the variable ( l lh ) (Ex ,  + Ek - Ex 
- E~), as long as "q is large with respect to the spacing between the values 
of this variable; then the second term of (2.11) is negligible for "r > >  I/or, 
where l/or may be identified with the correlation time for the macrosystem; 
we are thus working on a time scale long enough to ignore fluctuations from 
the nonperturbed state for the macrosystem. Since by (2.6) ~(z) has poles 
on the imaginary axis at the points (ilh)(~x - ~x'), ~x being the eigenvalues 
of H, and therefore by (2.9) T~k(Z *) also has such poles, as we did before 
we shall assume that the superposition of this huge set of contributions makes 
Q~gh(T, "!1) negligible if "r > >  1/or; then we have the simple asymptotic result 

Qgth(T , -q)=  'r Tr~F[ag(~(h  E h +  "q)ath)pm(t)], 

1 
--  < <  "r < <  "rl, " q > > ~  ( 2 . 1 3 )  
or 

where 8 is the spacing between the poles of T(z) and "rl represents the typical 
variation time inside the reduced description; "rl must be large enough, i.e., 
the reduced dynamics must be slow enough, to justify (2.12). Correspondingly, 
the statistical operator of  the microsystem must be such that 

p ~ - - 0  if E g - E f = l  (2.14) 
h "c 1 
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and the statistical operator pm(t) must  be close enough to an equilibrium 
statistical operator: 

E~ - E~, 1 
pm(t)XX, ----- 0 if - -  --> - -  (2.15) 

h "r l 

Let  us now concentrate on the expression 

~+i| dzt f+i~+" dz2 
, e(zl+z2)'r 

Lygh('r' "q) = J-i~+r 2'rri J-i~+~ 2'rri 

(x"l r}(z91 x> 
• x,x' ~ (z2 + (ilh)ED(z2 - (ilh)(Ex. - E~ - Ef)) 

k" 

(X' l Ttgh(z~) l X ") 
X (hlp'~(t) lh ') 

(zl - (ilh)Eh)(zl + (ilh)(Ex. - Ex, - Eg)) 

By a similar procedure, neglecting the singularities o f  T(z) and taking into 
account  the slow variability o f  T~(iy + "q), one has 

Lkfgh(T, "q) 
h e 

= x,x' ~,x- (Eh + Ex. - Eg - E~,, + ih'q)(Ek + Ex,, - Ef- Ex - ih'q) 

I (i~)(Eh-Ek)+2"q'r[x " I "pk: i )l h) x (e " e ,  + 

+ e - ~ •  (6~: - 6,, - 6~) + 2"q I X)O~'~,(t) 

-/ )Ix"> x(x ' l  ~ ,  h E h + , q  

- e(i'~)('g+e'~"-ek-e~")'~ + 3~(h" l T , ( -  h E, + "q)' h)p['x,(t) 
Tth(i (Ex,,- Ex,-  Eg) + 2.q)lh")} 
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Arguing as before, we can extract from this expression the dominant part: 

h2 (X"l T ~ ( - ( i l h ) E k  + "q) l h)p~x,(t)(h'  l T~h( - ( i / h )Eh  + "q) lh") 

x [e (i/h)(Eh-Ek)'r+2"q'r - e (~)(Eh+Ex"-F'f-ED'r+3n'r 

_ e(~)(Eg+Ex,-Et,-Ex,)T+3nx + e(i/h)(Eg-Ef)'r+4n "r] (2.16) 

The evaluations (2.13) and (2.16) hold for a finite value of the parameter -q; 
in the limit "q ---> 0 singularities arise in these expressions that would be 
compensated by singularities coming from the neglected contributions: the 
splitting of Qgth('r, "q) and Lkfah(T, ~1) into a relevant and a negligible part 
therefore becomes meaningless. For a finite confined system this treatment 
unavoidably relies on an approximation. The situation can be improved by 
considering the limit of  no confinement: then the set of  eigenvalues {Eg} 
and {Ex} becomes a continuum; expressions of the form (hi T~(z) l h ' )  become 
analytic functions for Re z > 0, having a cut on the imaginary axis, and 
the existence of the limit ~ ---> 0 can be reasonably assumed. The analytic 
continuation across the cut can be considered and one can assume that the 
singularities of  this continuation are located in the left half-plane far enough 
from the imaginary axis to give contributions that rapidly decay for -r > >  
l/or, thus providing the precise reason that makes the previously considered 
terms indeed negligible. In this way a further simplification of (2.16) becomes 
clear: if the sum over Ex, (or Ex,) is eventually replaced by an integral and 
the integration path shifted inside the complex Ex. plane, the contribution of  
the term exp[( i lh)(Eh + Ex,, - Ef  - E• can be calculated by shifting 
the integration path for Ex- in the upper half-plane; then only the contribution 
of the singularity l l (Ek + Ex. - Ef  - E~ - ih~q) lying in the upper half- 
plane must be considered, so that replacing Ex- by E~. = (Ex + Ef - Ek + 
ih~q), the term becomes exp[( i lh)(Eh - Ek)r + 2-q'r]. Similarly, exp[( i lh) (Eg 
+ Ex, - Ek -- Ex,)x + 3"q'r], replacing Ex- = (Ex, + Eg - Eh -- ih,q), becomes 
exp[( i lh)(Eh - E Dr  + 2"q'r]. We thus obtain for the square bracket in (2.16) 

i E [e(/~)(Eg-Ef )'r+4~r -- e (i~)(eh-ek)~+2~] ~-- 2xl'r + ~ ( g -- E f  + Ek - Eh)'r 

Keeping "q finite and appealing to (2.14), we are led to keep only the first 
contribution. As mentioned previously, the limit -q ---> 0 cannot be taken at 
any arbitrary step of  the calculation, which in its intermediate steps essentially 
relies upon the finiteness of "q [see (2.13)]; anyway it is to be expected that 
this limit can be considered after taking the continuous limit on the set 
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{E~}. By this systematic asymptotic evaluation of (2.10) we come to the 
following result: 

p~xh)(t + "r) = Tr~F[eae*(a~ak)p(t)] 

i 
= p~)(t) -- ~ 'r(Ek -- Eh)p~)(t) 

+ ,r ~ p~'~(t) Tr~ F as ~ h eh + ~ a~ pro(t) 
g 

+ ' r ~ T r ~  F ~- - -~Ek+ 'q  ak pro(t) 
g 

(x"t r)(-(i/h)Ek + "n)~X) 
+ 2nhZ" x,X'E,x" O~l)(t) (~-k 7 ~ X  "=  Eff~- E-x -~ 7~'~) (kl Pro(t) I k') 

f,g 

<x' ~ r~*"(-(i/h)e~ + ~)~x"> • 
(Eh + E• - Eg - Ex, + ihn) 

and recalling (2.3), we have 

dp~)(O 
dt 

1 
= - - / (Ek  - EhlP~)(t) + ~ ~ p~lg)(t)Qg*h 

h g 

1 E 1 + ~ s O ~ ( t )  + g ~ p}~(t)L~. (2.17) 
Ig 

which shows the structure of the generator ~ ,  where 

Q u  F ff - - ~ E k + ~  ak pm(t) 

Tr~F as ~ i  + .q)a~)pm(t)] Qtgh=h [ ( hEh 

(k" l T)(-(  ilh )Ek + xl) l k)p'~,(t)(k' l T*gh(--( ilh)Eh + "q) lk") 
Lygh = 2xlh3 • ( - ~  ~x" ---ET--f - ~ E - 7 - - - ~ 7  ~ "  ---E-Tg : E:7' + ih~l) 

k" 
By the splitting 
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where 

: [(~(/ ))] (Lx0u 2 ~ ( h l  - ~  Ek + "q ak a} (Ek + Ex - E I 

- Hm - ih'q)-]l  ~(t)) 

(2.18) 

~(t) being a complete system of eigenvectors of pro(t) [pm(t) = 
~r and introducing in ~(l) the operators Q, LaG, 

(kl Q If) = Ou (kl Lx~ If) = (LxOu 

we get the desired expression: 

dp(l)(t) _ 
dt 

i 1 1 [H, p(])(t)] + ~ {(Q + Q*), p(1)(t)} + ~ ~ ~Lx~p(l)(t)L~ 
h 

(2.19) 

where 

i 
H = Ho + ~ (Q - Qt) 

There is still one most important check to be done, that is, we have to verify 
that conservation of the trace of  the statistical operator has not been affected 
by the way we have extracted the completely positive evolution (2.19) from 
the Hamiltonian. Recalling (1.3), we have to check that the identity 

Tr~(,)[po)(t)(Q + Qt)] = _Tr~,)[p(l)(t) ~ "rr~L*x~Lx~] 
~,~. 

(2.20) 

holds within the approximations so far introduced. Then we can replace the 
second term in the 1.h.s. of  (2.19) by (1/2h){~,x "tr~ktxekxe, 9(1)(0}. Equation 
(2.20) can be rewritten as 

u ~,x 
g ,k~f 

(2.21) 

The part of the 1.h.s. of (2.21) not containing the statistical operator is equal to 

�9 r4 [(~( ~ ~+~ )ak)a~ + ak(~(~ ~,+~ )a~ )] 0m~t, } ~222, 
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T h e  r.h.s, d e m a n d s  a m o r e  c o m p l e x  ca l cu l a t i on :  

_! ~ ,.rr~,(Ltx,,~lks(Lx%)~ 
h ~,x" 

g 

g 

I ' • - ( i l h ) E g  - ~1 - ( i l h ) ( E x ,  - E I - E x )  

1 ] 
+ ( i l h ) E g  - ~ + ( i l h ) ( E x .  - E k  - -  E x , )  

1 
X 

- 2 0  + (U~)(Ez + E~ - Ek - E~,) 

[having in mind  to demons t ra te  (2.21), we now re lay  on (2.14)1 

-1  

. , . .  ( x " l  _ i  E~ - ",a 

g 

or  i 

, i 

g 

- 1  

but  us ing  the i den t i t y  

(z - "q - ~ 0 ) - l ~ ( z  + "q) = (1 + 2"q(z - "q - ~ o ) - ~ ) ( ( z  + "q - ~)-~~ 

w e  get ,  to  ze ro th  o r d e r  in  "q, 
- 1  

"q ~o ~ - •  
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and similarly 
-I 

"q ~o ~ +L E~ (+~ Eg-  - ) ( ( h  + "q)ag*) =ag+ 

thus obtaining 

1 

g 

)) ((i ) ) ] /  = Tr~eF ~ -~E~ +'r I ak a} + ak ~" ~Ef+'r I a} pm(t) 

that is, the same expression as in (2.22). 

3. PHYSICAL DISCUSSION AND CONCLUDING REMARKS 

To elucidate how an equation of the form (2.19) or equivalently (2.17) 
may be well suited to describe an interplay between a "purely optical" (that 
is wavelike) dynamics and an interaction with a measurement character, let 
us introduce the reversible mappings Mrr = Urt," U~t', where 

( ]) U:t, = T exp - ~  d'r (Ho(t) + iQ(t)) (3.1) 

corresponding to a coherent contractive evolution of the microsystem during 
the time interval [t', t'], and the completely positive mappings 

~x~ = Lx~(t)" L~(t)~,)  (3.2) 

whose measurement character may be inferred from the discussion following 
(1.7). The structure of the operators Lx~ [see (2.18)] further shows that these 
mappings may be linked with a transition inside the macrosystem specified 
by the pair of indexes 6, X, as a result of scattering with the microsystem. Under 
very particular conditions, strongly enhancing the measurement character of 
the interaction (as would be the case for a detector), these transitions could 
be macroscopically detectable, thus leading to a localization of the particle. 
To indicate such interactions we will therefore use the word "event." 

The solution of (2.19) can be written as 

Pt = ~ttoPto + S dtl "q~ttl~'hl~l(tl)'~tltoPto 

+ ~ dr2 dh S~tt2~x2~2(t2)s~t2,1~x2~l(h)s~tvoPt o + "'" (3.3) 
xt~l o 
X2~2 
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which can be interpreted as a sum over subcollections corresponding to the 
realization of no event, one event, two events, and so on. To see this, let us 
perform a measurement on the microsystem at time t, associated with an 
eigenstate ua of  some observable A. Then by (3.2) and (3.3) the probability 
pa(t) of the result ct for this observable at time t has the following structure: 

pa(t) = (ua 1.5~noPt o [ Ua) + E dtl (U a [ S~ttt,~hl~l(tl),C~tltoPto I Ua) 

[tf  
+ ~ dt2 dt~ 

h'l~l 0 Jto 
k2~2 

>( (u  al~tt2~k2~2(t2)~t2tl~klt;l(tl)S~tltOptOlua) + ' ' '  (3.4) 

Let us assume for simplicity that the initial preparation Pto is a pure state 
Pro = I*t0)(*tol ; then by (3.1), the first term in the 1.h.s. of  (3.4) has the form 

(U a I ~.q~ttoP,O [ Ida) = [ (Ida ] * ( t ) )  1 2 

*(t) = T exp - h  d'r (Ho(t) + iQ(t)) *to (3.5) 

and it gives the probability of measuring .4 = e~ at time t when no event is 
produced in between the preparation of  the state *to at time to and the 
measurement of A at time t; the trace of  the first subcollection 

p* = Tr~(l)M,,oO, ~ = 11,(0112 
gives the probability that no event happens in the time interval [to, t]; then 
apart from the fact that pt ~ --< 1 (p0 is a nonincreasing function), the usual 
statistical interpretation of the wave function is recovered. The integrand of  
the second term (ua I ~gt,~x~z(tl)gl1~toP,ol ua) can be interpreted as the proba- 
bility of  detecting A = ct at time t, when the transition h t ~  happens in the 
time interval It', t' + dt'], while no transition k~ happens in the time intervals 
[to, t'], [t' + dt', t]; in other words, the expression 

o dtl (ua I Mttl~j~l(tl).S~OtoPtol Ua) 

gives the probability of A = a at time t when one and only one event linked 
to the transition h1~1 happens in the time interval [to, t], while 

p~ = Tr~l) dtl ~tttkXl~l(tl)~qtoPto 

is just the probability for this sole event in the time interval [to, t]. While 
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the first term in the 1.h.s. of (3.3) is a pure state, provided Pro is, the second 
one, due to different transition times, is a mixture. The other terms of (3.3) 
provide the almost obvious generalization describing repeated production of  
events k~. 

If the macrosystem is an interferometer, the role of the first term is 
enhanced by the experimental situation; nevertheless, if one can monitor the 
path followed by the microsystem inside the interferometer, then the other 
terms also become relevant. If at the output of the interferometer an interfer- 
ence pattern is observed, some disturbance by an incoherent background due 
to these terms is unavoidable. Obviously such disturbance can be made 
negligible if the experimental setup is such as to "automatically" select 
only coherent contributions. This is the case if the disturbance originates in 
scattering and the acceptance along the whole path is small enough as in 
neutron interferometry; however, forward scattering cannot be eliminated, 
so, even simply relying on the present general theoretical framework, one 
should expect that the first term of (3.4) cannot account for the whole 
experimental evidence, and this should explain some difficulties that have 
been reported in the interpretation of neutron interference experiments, with- 
out resorting to a reformulation of quantum mechanics, as proposed by Namiki 
and Pascazio (1993). A more precise insight into the structure of the operators 
O and L can be obtained by introducing the field operator 

~b(x, t o )=  ~ afuf(x, to), a f=  ~ ~ d3x u/*(x, to)~(x, to) 
f t o  3 

and writing instead of (2.7) 

= ~ f d3x ' T(x, to, x', to', z)O(x', to') (~(z)~)(x, 0O) 

3 

Then (2.8) becomes 

T~(z) = ~ f d3x d3x ' u~'(x, to)T(x, x', to, to', Z)Ul(X', to') 
to,  tO' J 

and assuming translation invariance, 

f  3x, x,, o,,, 
,,,,,~ I 3 

= f d3X T~(X, z) 

TI[(X, z) = ~ d3r u'~ X + ~ , to T(r, co, co', Z)Ul X - - to' (3.6) 



86 Lanz  and Vacchini  

Corresponding to the representation (3.6) of Tk(z), one has a similar 
representation for (Lx0u 

(Lx~)kf = I d3X [Lx~(X)]u (3.7) 

simply obtained by substituting (3.6) into (2.18). 
The set of variables N~('r), "r >- to, with Nx~('r) being the number of 

transitions k~ up to time "r, defines a multicomponent classical stochastic 
process for which probability distributions and the description of statistical 
subcollections at times a', conditioned by the values N• can be given. 
This is a straightforward generalization of  the typical "counting process" 
considered by Srinivas and Davies (1981); e.g., the probability that in a time 
interval ['r~, "r2] there are N events related to transitions h ~ ,  h2~2 . . . . .  
k~u(k~), belonging, respectively, to certain subsets wl E Ft~, wz ~ Ft2 . . . . .  
w~ E FtN [h and ~(t) belong, respectively, to the spectra A of H,, and ~(t)  
of p"(t), which are practically a continuum, and Ft is a w-algebra on A • 
=-(0], when no event happens before "r~, is given by 

Pr:2(N, ~r) = Tr (~ , : z (N  , o')M,t0Pto) 

where ~;,t.,2(N, o )  is an operation, i.e., a contractive positive mapping on 
~-(~)): 

~,,,~(N, o) 

L I? (~)~ l l 

This flow of transitions accompanying the propagation of  the microsystem 
in the medium could prime a measurement inside some suitable measuring 
device; then P..:2(N, o) would be the probability for this device to be affected 
by the microsystem. In fact, writing F(o) = ff~:2(N, o')l, with ~ '  the adjoint 
mapping on ~(~( l ) )  (the set of bounded operators on ~ ) ) ,  one has 

P..:2(N, o) = Tr~(l)(F(o')~g.oPto) (3.8) 

where F (o )  is a positive operator, F(o) <- 1. Equation (3.8) is the typical 
probability rule of modern quantum mechanics in which the notion of  an 
"effect-valued measure" F(o) on some w-algebra of subsets generalizes the 
customary concept of a projection-valued measure, or equivalently of  a self- 
adjoint operator, associated to an observable; these observables present an 
idealization that is very useful for understanding the basic structure of quan- 
tum mechanics, but is too strong for representing real measuring devices 
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(Ludwig, 1983; Kraus, 1983; Holevo, 1982; Davies, 1976). A similar situation 
is met if one considers the statistical operator 

~l.,2(N, ~r)~,,oP,o 

P'r2 = P.rl,,2(N, 0") 

which represents the repreparation at time "r 2 of the statistical collection Pro 
under the condition that the aforementioned effect happens in the time interval 
[a't, "r2]. Taking (3.2) into account, we see that P~2 bears an analogy with the 
highly idealized von Neumann state reduction rule 

Pp~;)P p(+) _ 
*2 Tr(Pp(,~)) 

for the statistical operator p(,~), when it is reprepared at time "r 2 taking a 
measurement into account, associated with the projection operator P. 

Actually, by (3.3) a decomposition of Pt is given into subcoUections 
related to all possible detection patterns of events primed by the elementary 
transitions h~; mathematically this means that a decomposition of the evolu- 
tion mapping T(exp f[o dr' ~s has been given on the space of the jump 
processes Nx~('r). In different physical contexts, e.g., optical heterodyne detec- 
tion, more general decompositions of  an evolution mapping can be given, as 
has been shown in the aforementioned theory of  continuous measurement: 
then the variables involved are not only Nx~('r), but also the values of  continu- 
ously measured variables related to the system. 
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